
Achieving Serverless Harmony
With Traditional Apps

Mud Ball vs. Spoon

Story Time

● Began with EC2 instances in ASG’s, Ansible automation
● Introduced Serverless Framework
● Replace small HTTP service with API Gateway
● Move async jobs into Lambda
● Kill async/cron workers

Expensive Tasks

1. Breaking up shared-memory coupling
2. Connecting legacy apps to new event streams
3. Rewriting jobs in unsupported languages

Incidental Glue

FaaS in other Services

Using Cognito triggers,
Config Rules, and infra
cron jobs.

Backend Tasks

Intentional Event Stream

Architecture and plans
change to match new
tools/processes and
intentionally start
migrating features.

User-Facing

Major Replacement

Critical-path features
move from your monolith
to separate serverless
deployments.

Starting Points

On-Prem

Bare Metal

IaaS

Virtual Machines

Cloud Native

Highly Automated VMs/

Containers

Hard Parts

Scaling
Downstream Service

Considerations

● Introduce back pressure
● Prioritize user-facing tasks
● Denormalize data into

messages

Queueueueueueueing

● Kinesis retries handle capacity problems
● Serial, but only if you fit on one shard
● Put the full information the event needs in its trigger

○ S3 notably can’t
○ SNS partially does this with invoke event size limit

● Dead Letter Queue

DynamoDB

● Makes a great scratch space because events include
○ HASH+RANGE
○ New and old versions of modified data
○ TTL to expire finished job records while leaving an audit trail

● RCU/WCU remaining provides back pressure
● Adjustable capacity (with limits)

○ Even adjustable … from a Lambda

Monitoring
Revealing Brewing Problems

● Log log log log
● Cloudwatch connections
● Combine legacy and new

sources
● Teach new techniques

Structured Logging

● Logs are events, not strings
● Machine-readability matters
● CloudWatch filters can parse logged values to metrics
● JSON avoids regex pain and sadness

Structured Log

{

 “timestamp”: 1493214552,

 “event”: “user.login.success”,

 “user”: “ryansb”,

 “method”: “password”,

 “source”: {

 “type”: “web.navbar”,

 “client”: “git-b263b0”

 }

}

Central Visibility

● Forward CloudWatch Logs to legacy system
● Send application metrics to CloudWatch metrics
● Forward everything to...

○ Splunk
○ ELK stack
○ Graylog

Codebases
● Monorepo vs. split service
● Deployment pipelines
● Testing and staging

Monorepo

● Keeps attribution
● Single history
● Always test full repo
● Cross-cutting changes are easier
● No dependent pull requests

● Smaller individual repos
● Per-repo test pipelines
● Fewer changes in-flight
● Cross-repo changes
● Submodules (ew)

Deploy Pipelines

● Deploys have to be independent
● Avoid backwards incompatible changes in event formats
● DB migrations now have one more step

harmony.serverless.zone

@ryan_sb

Thanks!

